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Abstract. The properties of ripplonic polarons in a multielectron bubble in liquid helium are investigated
on the basis of a path-integral variational method. We find that the two-dimensional electron gas can
form deep dimples in the helium surface, or ripplopolarons, to solidify as a Wigner crystal. We derive the
experimental conditions of temperature, pressure and number of electrons in the bubble for this phase to be
realized. This predicted state is distinct from the usual Wigner lattice of electrons: it melts by dissociation
of the ripplopolarons when the electrons shed their localizing dimple as the pressure on the multielectron
bubble drops below a critical value.

PACS. 73.20.Qt Electron solids – 73.20.-r Electron states at surfaces and interfaces – 64.70.Dv Solid-liquid
transitions – 68.35.Ja Surface and interface dynamics and vibrations – 47.55.Dz Drops and bubbles

1 Introduction

The two-dimensional (2D) electron system formed on the
surface of liquid helium has been widely investigated, es-
pecially with regard to the formation and melting of a
Wigner lattice [1]. An electric field pressing the electrons
against the helium surface results in an interaction be-
tween the electrons and the quantized modes of oscilla-
tion of the helium surface, the ripplons [2]. In this paper,
we investigate the effects of the electron-ripplon coupling
in a multielectron bubble in liquid helium and highlight
the differences with the case of electrons on a flat helium
surface. Such multielectron bubbles (MEBs) are spheri-
cal cavities in liquid helium. MEBs are typically 0.1 µm–
100 µm in radius for 103–108 electrons [3]. The bubble’s
diameter is determined by the balance between the sur-
face tension of liquid helium and the Coulomb repulsion
of the electrons [4].

The electrons are not distributed throughout the vol-
ume of the bubble, but form a nanometer thin and effec-
tively 2D layer anchored to the inside of the bubble sur-
face [5]. Although the flat 2D electron gas has been studied
extensively and new quantum states such as the fractional
quantum Hall regime were revealed, much less effort has
gone to the study of the spherically curved 2D electron
gas such as the one present in MEBs. Spherical shells of
charged particles appear also in a variety of other physical
systems, such as fullerenes [6], metallic nanoshells [7], and
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charged macroscopic droplets. The main goal of this paper
is to show that the enhanced electron-ripplon coupling in
the bubble leads to a new solid phase, a lattice of ripplonic
polarons, that is distinct from the electron Wigner lattice,
and to investigate the properties of this phase.

Using pressure, the surface of the MEB can be com-
pressed to achieve 2D electron densities as high as
1014 cm−2 [8], whereas flat surfaces are limited to 2 ×
109 cm−2 due to an instability [9]. This instability is not
present in multielectron bubbles [10]. As a result very large
electric fields exist on an electron, normal to the surface
(due to all other electrons in the MEB), whereas for a flat
surface the maximum field is around 3 kV/cm. Some typ-
ical values for physical variables related to the bubble are
given in Table 1.

The Hamiltonian of a single electron on a flat helium
surface is given by

Ĥ =
p̂2

2me
+

∑
q

�ω(q)â+
q âq +

∑
q

Mqe−iq.r
(
âq + â+

−q

)
,

(1)
where p̂ is the electron momentum operator, me is the
electron mass, and ω(q) = q

√
σq/ρ is the ripplon disper-

sion relation with σ ≈ 3.6×10−4 J/m2 the surface tension
of helium and ρ = 145 kg/m3 the mass density of helium.
In this Hamiltonian, we restrict ourselves to 2D position
and momentum operators, assuming that the part of the
wave function of the electrons relating to the direction per-
pendicular to the surface can be factored out exactly. The
second-quantization operators â+

q , âq create/annihilate a
ripplon with planar wave number q. The electron-ripplon
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Table 1. For typical multielectron bubbles, the values of the
several physical quantities are given at zero applied external
pressure. The number of electrons in the bubble (N), the bub-
ble radius (Rb), the average interelectron distance (d), the sur-
face density of electrons (ns), the pressing field generated by
the electrons |E| (see Eq. (9)), the characteristic energy scale of
the electron-ripplon interaction ((e|E|)2/σ, cf. formula (16)),
and the characteristic frequency of the lattice potental (ωlat)
are given. Compare these quantities to, for example, the maxi-
mum density (≈ 2×109 cm−2) and the maximum pressing field
(≈ 3 kV/cm) achievable on a flat helium surface over bulk.

N Rb(µm) d(nm) ns(cm
−2)

103 0.228 25.57 1.529×1011

105 4.937 55.34 3.265×1010

107 106.4 119.3 7.025×109

N |E|(kV/cm) e2|E|2/σ (meV) ωlat(THz)

103 138.3 85.16 3.891

105 63.80 3.884 1.222

107 6.350 0.180 0.386

coupling amplitude is given by

Mq =

√
�q

2ρω(q)
e|E|, (2)

where E is the electric field perpendicular to the surface
(the so-called ‘pressing field’), and e is the electron charge.
The pressing field pushes the electrons with a force eE to-
wards the helium surface, that acts like a sheet with sur-
face tension σ. Note that there is a 1 eV barrier preventing
single electrons from penetrating the helium surface. The
self-induced trapping potential of the electron on the he-
lium surface is manifested by the appearance of a dimple
in the helium surface underneath the electron, much like
the deformation of a rubber sheet when a person is pulled
down on it by a gravitational force. The resulting quasi-
particle consists of the electron together with its dimple
and can be called a ripplonic polaron or ripplopolaron [11].

Hamiltonian (1) for the ripplopolarons is very similar
to the Fröhlich Hamiltonian describing polarons [12]; the
role of the phonons is now played by the ripplons. Methods
suitable for the study of single polarons have been used to
analyse the single ripplopolaron on a flat surface [13,14].
Recently, Fratini and Quémerais [15] have proposed a path
integral treatment for a Wigner lattice of polarons. One
of the goals of the present paper is to adapt their method
so that it becomes suitable for the treatment of a lattice
of ripplopolarons.

In Section 2 we introduce the Hamiltonian describ-
ing a ripplopolaron in a Wigner lattice of ripplopolarons
in a multielectron bubble. The temperature zero solution
for the ground state of this Hamiltonian is derived in the
strong-coupling case in Section 3. The results for arbitrary
interaction strength and arbitrary finite temperature, ob-
tained with the variational path-integral technique, are
presented in Section 4. These finite-temperature results

allow us to investigate the melting of the ripplopolaron
Wigner lattice and determine the phase diagram of this
state in Section 5. The results are discussed and com-
pared with the case of electrons on a flat helium surface
in Section 6.

2 Hamiltonian for a ripplopolaron in a Wigner
lattice

In their treatment of the electron Wigner lattice embedded
in a polarizable medium such as a semiconductors or an
ionic solid, Fratini and Quémerais [15] described the effect
of the electrons on a particular electron through a mean-
field lattice potential. The (classical) lattice potential Vlat

is obtained by approximating all the electrons acting on
one particular electron by a homogenous charge density
in which a hole is punched out; this hole is centered in the
lattice point of the particular electron under investigation
and has a radius given by the lattice distance d. Thus,
in their approach, the anisotropy effects are neglected. A
second assumption implicit in this approach is that the
effects of exchange are neglected. This can be justified by
noting that for the electrons to form a Wigner lattice it is
required that their wave function be localized to within a
fraction of the lattice parameter as follows from the Lin-
demann criterion [16]. As can be read from Table 1, the
typical distance between electrons (the lattice parameter)
is 10–100 nm.

Within this particular mean-field approximation, the
lattice potential can be calculated from classical electro-
statics and we find that for a 2D electron gas it can be
expressed in terms of the elliptic functions of first and
second kind, E (x) and K (x),

Vlat (r) = − 2e2

πd2

{
|d− r|E

[
− 4rd

(d− r)2

]

+ (d+ r) sgn (d− r)K

[
− 4rd

(d− r)2

]}
· (3)

Here, r is the position vector measured from the lattice
position. We can expand this potential around the origin
to find the small-amplitude oscillation frequency of the
electron lattice:

lim
r�d

Vlat (r) = −2e2

d
+

1
2
meω

2
latr

2 + O (
r4

)
, (4)

with the confinement frequency

ωlat =

√
e2

med3
· (5)

Although this mean-field approach may seem crude, it has
the distinct advantage that the ‘phonon’ frequency ωlat of
the electron lattice corresponds closely to the longitudinal
plasmon frequency that can be derived using an entirely
different approach based on a more rigorous study of the
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modes of oscillations of both the bubble and the charge
distribution on the bubble surface [17]. This frequency lies
typically in the THz range and the lattice parameter d
in MEBs ranges roughly from 10 to 100 nm. From this,
and from the successful application of this mean-field ap-
proach to polaron crystals in solids, we conclude that the
approach based on that of Fratini and Quémerais describes
the influence of the other electrons well in the framework
of small amplitude oscillations of the electrons around
their lattice point. The (modified) Lindemann melting cri-
terion suggests that the lattice will melt when the elec-
trons are on average displaced more than ca. 10% from
their lattice position; thus in the regime of interest the
Fratini-Quémerais approach is applicable. In the mean-
field approximation, the Hamiltonian for a ripplopolaron
in a lattice on a locally flat helium surface is given by

Ĥ =
p̂2

2me
+ Vlat (r̂) +

∑
q

�ω(q)â+
q âq

+
∑
q

Mqe−iq·r (
âq + â+

−q

)
, (6)

where r̂ is the electron position operator.
Now that the lattice potential has been introduced, we

can move on and include effects of the bubble geometry.
If we restrict our treatment to the case of large bubbles
(with N > 105 electrons) such as those already experi-
mentally observed [3], then both the ripplopolaron radius
and the inter-electron distance d are much smaller than
the radius of the bubble Rb. This gives us ground to use
the locally flat approximation using the auxiliary model
of a ripplonic polaron in a planar system described by (6),
but with a modified ripplon dispersion relation and an
modified pressing field. In Appendix A we provide a more
detailed description of the electron-ripplon interaction on
a sphere and discuss how the locally flat approximation (6)
is linked to the exact expressions for the curved surface.
Essentially, we find for the modified ripplon dispersion re-
lation in the MEB:

ω(q) =
√
σ

ρ
q3 +

p

ρRb
q, (7)

where Rb is the equilibrium bubble radius which depends
on the pressure and the number of electrons [8]. The
bubble radius is found by balancing the surface tension
and the pressure with the Coulomb repulsion [8]. At zero
pressure, it scales as N2/3 and in the pressure-dominated
regime (p� σ/Rb) it scales with pressure as p−1/4. Some
typical values are given in Table 1. The modified electron-
ripplon interaction amplitude in an MEB is given by

Mq = e|E|
√

�q

2ρω(q)
· (8)

The effective electric pressing field pushing the electrons
against the helium surface and determining the strength
of the electron-ripplon interaction is

E = − Ne

2R2
b

er. (9)

Some typical values for the pressing field and the dimen-
sionless coupling constants are given in Table 1. Note
that the electric field in the bubble is larger than the
typical pressing fields (of the order of 102 − 103 V/cm)
applied on electrons on a flat helium surface. Thus, the
electron-ripplon coupling will be stronger in the multi-
electron bubble. The modified ripplon dispersion relation
(and the dependence of the bubble radius on the num-
ber of electrons and the pressure) was studied in more
detail in reference [8], and the stability of the multielec-
tron bubble against surface deformational modes was in-
vestigated in detail in references [5,10]. These studies con-
cluded that even though a large effective electric pressing
field is present at zero pressure, the bubbles can be stable
in contrast to the flat surface which can only sustain a
moderate electric pressing field.

The crucial differences that exist between the case of a
ripplopolaron in the multielectron bubble and on the flat
surface (and that are preserved in the locally flat approx-
imation) are (i) the electric pressing field E is stronger
than that typically realized for electrons on helium films
(see Tab. 1) and thus the electron-ripplon coupling is en-
hanced as compared to the normal film; (ii) the interaction
energy arising from the change in polarisation of the he-
lium due to the displacement of the electron has a similar
form, but is much weaker and can be neglected. In addi-
tion the electric field, and thus the electron-ripplon cou-
pling increases as the bubble radius is decreased. Thus,
pressurizing the bubbles, which decreases the radius, also
increases the electron-ripplon coupling strength (roughly
as R−2

b ). In the high-pressure regime (p � σ/Rb), the
bubble radius goes as p−1/4 and thus the electron-ripplon
coupling increases as

√
p. The pressure provides a ‘tuning

knob’ to set the electron-ripplon interaction strength at a
desired level.

3 The ripplopolaron Wigner lattice
at temperature zero

3.1 Ground state

To gain insight into the nature of the Wigner solid of rip-
plopolarons, we will analyse Hamiltonian (6) first in the
strong-coupling approach. In the next section, the more
general and more accurate Feynman variational path-inte-
gral method will be applied, generalizing the results of this
section to finite temperature. Noting that the frequency
associated with the electron’s motion, ωlat, is typically
several orders of magnitude larger than the frequency as-
sociated with the ripplons [17], ω(q), we can safely make
the product ansatz for the wave function of the ripplopo-
laron in the lattice: |Ψ〉 = |ψe〉 |φ〉. Here |φ〉 is the factor of
the wave function that contains the ripplon coordinates,
and |ψe〉 is the electronic part of the wave function. For
small-amplitude oscillations of the electrons around their
lattice site, the lattice potential Vlat is well approximated
by a parabolic potential (4), so we choose a Gaussian trial



332 The European Physical Journal B

wave function for the electronic part:

|ψe〉 =
1

π1/2a
e−r2/(2a2). (10)

In this trial wave function the variational parameter is a,
the width of the electron wave function. Taking the ex-
pectation value of Hamiltonian (6) with respect to this
electronic part of the wave function yields:

〈ψe| Ĥ |ψe〉 =
�

2

2mea2
+
meω

2
lat

2
a2 +

∑
q

�ω(q)â+
q âq

+
∑
q

Mqe−a2q2/4
(
âq + â+

−q

)
. (11)

The ripplonic part of 〈ψe| Ĥ |ψe〉 represents a displaced
harmonic oscillator and can be rewritten as

〈ψe| Ĥ |ψe〉 =
�

2

2mea2
+
meω

2
lat

2
a2 −

∑
q

|Mq|2e−a2q2/2

�ω(q)

+
∑
q

�ω(q)
[
â+
q + Mqe−a2q2/4

�ω(q)

] [
âq + Mqe−a2q2/4

�ω(q)

]
. (12)

The ground state of the displaced (2D) harmonic oscillator
at temperature zero has energy �ω(q), independent of the
variational parameter a. To find the variational optimal
value of a, we minimize the ripplopolaron energy

E(a) =
�

2

2mea2
+
meω

2
lat

2
a2 −

∑
q

|Mq|2e−a2q2/2

�ω(q)
· (13)

The sum over momenta can be rewritten as an integral,
remembering∑

q

→
∫

q>1/Rb

d2q
(2π)2

=
∫

q̃>1

d2q̃
(2π)2R2

b

· (14)

The lower limit appears since the largest wavelength avail-
able is 1/Rb. We checked that the final results do not
depend crucially on the value of this naturally occurring
cut-off. A dimensionless integration variable q̃ = qRb is
introduced. The ground state energy of the ripplopolaron
can then be evaluated analytically:

E(a) =
�

2

2mea2
+
meω

2
lat

2
a2

− (e|E|)2
2πσ

∞∫
1

dq̃
q̃

q̃2 +
pRb

σ

exp
[
− a2

2R2
b

q̃2
]

(15)

=
�

2

2mea2
+
meω

2
lat

2
a2

− (e|E|)2
4πσ

exp
[
pa2

2σRb

]
Γ

[
0,

a2

2R2
b

(
1 +

pRb

σ

)]
,

(16)

where Γ is the incomplete gamma function. Figure 1 shows
the result for the variational parameter a as a function
of number of electrons and pressure in the multielectron
bubble. If this figure, a is expressed relative to the inter-
electron distance

√
4πR2

b/N .

Fig. 1. The variational parameter a describing the width of
the electron wave function in the strong-coupling approach as
a function of number of electrons and pressure in the multi-
electron bubble. d is the interelectron separation.

3.2 Dimple shape

The ripplonic part of the Hamiltonian (12) represents os-
cillations of the helium surface no longer around the orig-
inal bubble surface, but around a new, displaced equilib-
rium surface. This displacement of the helium surface is
the dimpling. Underneath each electron, a dimple appears.
The new equilibrium surface, described by the function
u(r) (cf. appendix, Eq. (39)), can be found by using the
canonical relation between the surface displacement oper-
ator and the ripplon creation and annihilation operators:

Q̂q =

√
�q

2ρω(q)
(âq + â+

−q), (17)

and evaluating

u(r) =
∑
q

〈Ψ | Q̂q |Ψ〉 eiq·r. (18)

The result is given by

u(r) =
e|E|
2πσ

∫ ∞

1

dq̃
q̃

q̃2 +
pRb

σ

J0

(
q̃r

Rb

)
e−a2q̃2/(4R2

b).

(19)
In the limiting case of a large bubble, this result corre-
sponds to that of Shikin and Monarkha [11] for electrons
on a flat helium surface; the role of the capillary con-
stant is played by p/(σRb). Figure 2 shows, for a bubble
with N = 105 electrons, at different pressures the shape
of the dimpled surface. Several dimples are shown – above
the center of each dimple an electron is present. The dot-
ted curve represents the undimpled u(r) = 0 surface; the
curvature of the bubble surface is visible in this curve.
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Fig. 2. For a bubble with N = 105 electrons the shape of
the dimpled surface is shown at different pressures. Electrons
are present on the surface, separated from each other by the
lattice parameter d. Underneath each electron there is an in-
dividual dimple, induced by the electron-ripplon interaction.
As the pressure is increased, the bubble radius decreases, and
the electron-ripplon interaction becomes stronger, resulting in
a stronger dimpling effect.

The electrons are separated by the interelectron distance
d =

√
4πR2

b/N . As the pressure increases, the radius of
the bubble decreases. Since the number of electrons is fixed
the electric pressing field increases, making on its turn the
electron-ripplon coupling larger. This results in deeper,
narrower dimples. Note that while the deformation here
can be several angstroms, for a flat surface on bulk he-
lium the maximum deformation of a dimple is less than
one angstrom [18]. Also for electrons on a thin helium film
above a dielectric substrate, the dimple depth can reach
several angstroms [19].

4 The ripplopolaron Wigner lattice at finite
temperature

The simple but intuitive approach of the previous section
describes the system in the limit of temperature zero. To

study the ripplopolaron Wigner lattice at finite tempera-
ture (and for any value of the electron-ripplon coupling),
we use the variational path-integral approach [20]. This
variational principle distinguishes itself from Rayleigh-
Ritz variation in that it uses a trial action functional Strial

instead of a trial wave function.
The action functional of the system described by

Hamiltonian (6), becomes, after elimination of the rip-
plon degrees of freedom,

S = −1
�

�β∫
0

dτ
{me

2
ṙ2(τ) + Vlat[r(τ)]

}
+

∑
q

|Mq|2

×
�β∫
0

dτ

�β∫
0

dσGω(q)(τ − σ)eiq·[r(τ)−r(σ)], (20)

with

Gν(τ − σ) =
cosh[ν(|τ − σ| − �β/2)]

sinh(β�ν/2)
· (21)

In preparation of its customary use in the Jensen-
Feynman inequality, the action functional (20) is written
in imaginary time t = iτ with β = 1/(kBT ) where T is
the temperature. Following an approach analogous to
that of Fratini and Quémerais for a lattice of polarons in
a semiconductor [15], and to that of Devreese et al. for N
polarons in a quantum dot [21], we introduce a quadratic
trial action of the form

Strial = −1
�

�β∫
0

dτ
[
me

2
ṙ2(τ) +

meΩ
2

2
r2(τ)

]

−Mw2

4�

�β∫
0

dτ

�β∫
0

dσGw(τ − σ)r(τ) · r(σ), (22)

where M,w, and Ω are the variationally adjustable pa-
rameters. This trial action corresponds to the Lagrangian

L0 =
me

2
ṙ2 +

M

2
Ṙ2 − κ

2
r2 − K

2
(r − R)2, (23)

from which the degrees of freedom associated with R have
been integrated out. This Lagrangian can be interpreted
as describing an electron with mass me at position r,
coupled through a spring with spring constant κ to its
lattice site, and to which a fictitious mass M at position
R has been attached with another spring, with spring
constant K. The relation between the spring constants in
(23) and the variational parameters w,Ω is given by

w =
√
K/me, (24)

Ω =
√

(κ+K)/me. (25)

Based on the trial action Strial, Feynman’s variational
method allows one to obtain an upper bound for the free
energy F of the system (at temperature T ) described
by the action functional S by minimizing the follow-
ing function:

F = F0 − 1
β
〈S − Strial〉 , (26)
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with respect to the variational parameters of the trial ac-
tion. In this expression, F0 is the free energy of the trial
system characterized by the Lagrangian L0, β = 1/(kbT )
is the inverse temperature, and the expectation value
〈S − Strial〉 is to be taken with respect to the ground state
of this trial system. The evaluation of expression (26) is
straightforward though lengthy. We find

F =
2
β

ln
[
2 sinh

(
β�Ω1

2

)]
+

2
β

ln
[
2 sinh

(
β�Ω2

2

)]

− 2
β

ln
[
2 sinh

(
β�w

2

)]
− �

2

2∑
i=1

a2
iΩi coth

(
β�Ωi

2

)

−
√
πe2

D
e−d2/(2D)

[
I0

(
d2

2D

)
+ I1

(
d2

2D

)]

− 1
2π�β

∫ ∞

1/Rb

dqq|Mq|2
∫ �β/2

0

dτ
cosh[ω(q)(τ − �β/2)]

sinh[β�ω(q)/2]

× exp


− �q2

2me

2∑
j=1

a2
j

cosh(�Ωjβ/2)−cosh[�Ωj(τ−β/2)]
Ωj sinh(�Ωjβ/2)


 · (27)

In this expression, I0 and I1 are Bessel functions of imag-
inary argument, and

D =
�

me

2∑
j=1

a2
j

Ωj
coth (�Ωjβ/2) , (28)

a1 =

√
Ω2

1 − w2

Ω2
1 − Ω2

2

; a2 =

√
w2 −Ω2

2

Ω2
1 −Ω2

2

· (29)

Finally, Ω1 and Ω2 are the eigenfrequencies of the trial
system, given by

Ω2
1,2 =

1
2

[
Ω2 + w2 ±

√
(Ω2 − w2)2 + 4K/(Mme)

]
.

(30)
Optimal values of the variational parameters are deter-
mined by the numerical minimization of the variational
functional F as given by expression (27). As the reader
may notice, the result of the variational path-integral me-
thod is slightly less intuitive than that of the strong-
coupling approach of the previous section, nevertheless it
is much more general and will allow us to introduce tem-
perature to examine the melting of the Wigner lattice of
ripplopolarons in the next section.

5 Melting of the ripplopolaron Wigner lattice

The Lindemann melting criterion [16] states in general
that a crystal lattice of objects (be it atoms, molecules,
electrons, or ripplopolarons) will melt when the average
motion of the objects around their lattice site is larger
than a critical fraction δ0 of the lattice parameter d. It
would be a strenuous task to calculate from first prin-
ciples the exact value of the critical fraction δ0, but for
the particular case of electrons on a helium surface, we

can make use of an experimental determination. Grimes
and Adams [22] found that the Wigner lattice melts when
Γ = 137 ± 15, where Γ is the ratio of potential energy to
the kinetic energy per electron. In their experiment, the
electron density varied from 108 cm−2 to 3 × 108 cm−2

while the melting temperature Tc varied from 0.23 K to
0.66 K. At temperature T the average kinetic energy in a
lattice potential Vlat is

Ekin =
�ωlat

2
coth

(
�ωlat

2kBT

)
, (31)

and the average distance that an electron moves out of
the lattice site is determined by

〈
r2

〉
=

�

meωlat
coth

(
�ωlat

2kBT

)
=

2Ekin

meω2
lat

· (32)

From this we find that for the melting transition in Grimes
and Adams’ experiment [22], the critical fraction equals
δ0 ≈ 0.13. This estimate is in agreement with previous
(empirical) estimates yielding δ0 ≈ 0.1 [23], and we shall
use it in the rest of this paper.

The unmodified Lindemann criterion as stated above
cannot be applied to an infinite layer of electrons on he-
lium at non-zero temperature, because (when a thermal
occupation of the ripplon modes is assumed) a straight-
forward calculation of the average distance that an elec-
tron moves out of its lattice site yields a divergent result.
This divergence is closely related to Hohenberg’s theorem
forbidding Bose-Einstein condensation in 2D. Therefore,
many authors rely on a modified Lindemann criterion [24]
that considers the average distance between two nearest
neighbors instead of the average distance of a lattice resi-
dent from its lattice site. However, for the current geom-
etry this modification is unnecessary: the multielectron
bubble is a finite and confined system, for which consider-
ations based on Hohenberg’s theorem do not apply. Hence,
we shall use the unmodified Lindemann criterion to study
the melting of the ripplopolaron lattice. In practice, we
see that the above-mentioned divergence is not present
because there is a natural cut-off wavelength for the rip-
plons: the lowest ripplon mode on a sphere corresponds
to an � = 1 spherical harmonic, to which a characteris-
tic wavelength of the order of 1/Rb can be associated. We
have checked that the results do not depend on the precise
value of the cut-off wavelength λ/Rb with λ on the order
of 1.

Within the approach of Fratini and Quémerais [15],
the Wigner lattice of (ripplo)polarons melts when at least
one of the two following Lindemann criteria are met:

δr =

√〈R2
cms〉
d

> δ0, (33)

δρ =

√〈ρ2〉
d

> δ0. (34)

where ρ and Rcms are, respectively, the relative coor-
dinate and the center of mass coordinate of the model
system (23): if r is the electron coordinate and R is
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the position coordinate of the fictitious ripplon mass M ,
this is

Rcms =
mer +MR
me +M

; ρ = r − R. (35)

The appearance of two Lindemann criteria takes into ac-
count the composite nature of (ripplo)polarons. As follows
from the physical sense of the coordinates ρ and Rcms, the
first criterion (33) is related to the melting of the ripplopo-
laron Wigner lattice towards a ripplopolaron liquid, where
the ripplopolarons move as a whole, the electron together
with its dimple. The second criterion (34) is related to
the dissociation of ripplopolarons: the electrons shed their
dimple.

The path-integral variational formalism outlined in the
previous section allows us to calculate the expectation val-
ues

〈
R2

cms

〉
and

〈
ρ2

〉
with respect to the ground state of

the variationally optimal model system. We find
〈
R2

cms

〉
=

�w4

me [w2(Ω2
1 +Ω2

2) −Ω2
1Ω

2
2 ] (Ω2

1 −Ω2
2)

× [
Ω4

2(Ω2
1 − w2) coth(�Ω1β/2)/Ω1

+Ω4
1(w2 −Ω2

2) coth(�Ω2β/2)/Ω2

]
, (36)

〈
ρ2

〉
=

�

me (Ω2
1 −Ω2

2) (Ω2
1 − w2) (w2 −Ω2

2)

× [
Ω3

1(w2 −Ω2
2) coth (�Ω1β/2)

+Ω3
2(Ω2

1 − w2) coth(�Ω2β/2)
]
. (37)

The procedure to find whether the Lindemann criteria are
fulfilled is then as follows: first the optimal values of the
variational parameters are obtained by minimization of
the free energy (27), and then these optimal values are
substituted in (36, 37). Numerical calculation shows that
for ripplopolarons in an MEB the inequality Ω1 � w
is fulfilled (w/Ω1 ≈ 10−3 to 10−2) so that the strong-
coupling regime is realized, in agreement with the results
of Section 2. Owing to this inequality, we find from equa-
tions (36, 37) that 〈

R2
cms

〉 � 〈
ρ2

〉 · (38)

So, the destruction of the ripplopolaron Wigner lattice in
an MEB occurs through the dissociation of ripplopolarons,
since the second criterion (34) will be fulfilled before the
first (33). The results for the melting of the ripplopo-
laron Wigner lattice are summarized in the phase diagram
shown in Figure 3. For every value of N , pressure p and
temperature T in an experimentally accessible range, this
figure shows whether the ripplopolaron Wigner lattice is
present (points above the surface) or molten (points be-
low the surface). Below a critical pressure (on the order of
104 Pa) the ripplopolaron solid will melt into an electron
liquid. This critical pressure is nearly independent of the
number of electrons (except for the smallest bubbles) and
is weakly temperature dependent, up to the helium criti-
cal temperature 5.2 K. This can be understood since the
typical lattice potential well in which the ripplopolaron re-
sides has frequencies of the order of THz or larger, which
correspond to ∼ 10 K.

Fig. 3. The phase diagram for the spherical 2D layer of elec-
trons in the MEB. Above a critical pressure, a ripplopolaron
solid (a Wigner lattice of electrons with dimples in the he-
lium surface underneath them) is formed. Below the critical
pressure, the ripplopolaron solid melts into an electron liquid
through dissociation of ripplopolarons.

6 Discussion

In the previous section we have established that the rip-
plopolaron Wigner lattice will not melt into a liquid of rip-
plopolarons, but rather melt through dissociation of the
composite quasiparticle that is the ripplopolaron. The ab-
sence of a ripplopolaron liquid phase can be understood
intuitively from the fact that the ripplon frequencies (typ-
ically GHz) are several orders of magnitude smaller than
the electron frequencies in the lattice potential (typically
THz). In order to create a liquid of ripplopolarons, the rip-
plopolarons have to move with an average velocity large
enough to keep the ripplopolaron lattice molten. This mo-
tion has to be of the entire object, namely the electron and
its dimple. But, at the velocities required to keep the rip-
plopolaron liquid from freezing into a lattice, the dimples
cannot follow the electrons. Thus, ripplopolarons only ex-
ist in a crystallized state.

The present treatment does not allow us to derive the
structure of this lattice – the mean-field approximation
made for the lattice potential prohibits this. The prob-
lem of the exact lattice structure is complicated by the
topology of the surface [25]: unlike for a flat surface, it
is impossible to tile a sphere with a triangular lattice.
Frustration of the lattice in the form of point defects is
unavoidable, providing nucleation points for melting the
lattice. The problem of placing classical point charges on
a sphere was first considered by Thomson [26] and was re-
cently reconsidered for localized electrons in multielectron
bubbles [27].
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The present treatment does allow us to also study the
electron Wigner lattice, by putting e|E| = 0 in the above
results, thus switching the electron-ripplon coupling off. A
Wigner lattice of electrons is to be distinguished from a
Wigner lattice of ripplopolarons. The lattice of ripplopo-
larons on the one hand melts through dissociation of the
ripplopolarons, and this melting line is almost tempera-
ture independent. The lattice of electrons on the other
hand melts through either classical thermal motion (when
the temperature reaches a melting temperature of about
0.5 K), or through quantum melting when the density of
electrons is large enough so that the extent of the zero-
point motion becomes comparable to the lattice parame-
ter. In the Wigner lattice of the ripplopolarons, the par-
ticles are localized by the self-induced polaronic trapping
potential (the dimple) due to the electron-ripplon inter-
action. In the Wigner lattice of electrons, the electrons
are localized through the Coulomb interaction between
the electrons. Finally, the region in phase space where the
ripplopolaron Wigner lattice resides is different from the
region where the electron Wigner lattice is found. This is
illustrated in Figure 4, where the phase diagram drawn in
Figure 3 is extended to huge bubbles (approaching the flat
surface geometry). In the corner of largest N (N > 109,
Rb � 1 mm, ns � 109–1010 cm−2) and lowest pressure
(p < 0.1 Pa), we find that an electron Wigner lattice
(without individual dimples) can still be formed below
T = 0.4 K. Thus, the electron Wigner lattice is recovered
and the melting temperature derived from our treatment
is in agreement with the experimentally observed temper-
ature [22]. Our calculations show that, as the bubble is
compressed, the electron Wigner lattice will quantum melt
because of the increased density of electrons. The region of
phase space where the electron Wigner lattice is present is
separated from the region where the ripplopolaron Wigner
lattice is present by a region where the predicted phase is
an electron liquid. The ripplopolaron liquid phase, as men-
tioned before, does not exist. Since, as mentioned in the
previous paragraph, our method does not allow us to study
the crystal structure, we cannot, in the electron Wigner
lattice phase, distinguish between the crystalline and the
hexatic phase [28].

The new phase that we predict, the ripplopolaron
Wigner lattice, will not be present for electrons on a flat
helium surface. At the values of the pressing field neces-
sary to obtain a strong enough electron-ripplon coupling,
the flat helium surface is no longer stable against long-
wavelength deformations [9]. Multielectron bubbles, with
their different ripplon dispersion and the presence of sta-
bilizing factors such as the energy barrier against fission-
ing [10], allow for much larger electric fields pressing the
electrons against the helium surface. The regime of N , p,
T parameters suitable for the creation of a ripplopolaron
Wigner lattice lies within the regime that would be achiev-
able in recently proposed experiments aimed at stabiliz-
ing multielectron bubbles [29]. The ripplopolaron Wigner
lattice and its melting transition might be detected by
spectroscopic techniques [22,30] probing for example the
transverse phonon modes of the lattice [31].

Fig. 4. The phase diagram, shown in Figure 3 is extended
to reveal the relation of the ripplopolaron Wigner lattice to
the Wigner lattice of electrons. These are distinct, not only
in melting properties (the ripplopolaron Wigner lattice melts
through dissociation of ripplopolarons), but also in their loca-
tion on the phase diagram. The region for the Wigner lattice of
electrons without dimples –in agreement with the observation
of Grimes and Adams [22] – starts at large N and is quantum
molten by pressurizing the bubble.

7 Conclusions

In this paper, we investigate the properties of ripplopo-
larons in a multielectron bubble in helium using path-
integral methods similar to those developed for a lattice
of polarons [15]. Expressions are derived for the free en-
ergy and the dimple shape of ripplopolarons in a Wigner
lattice in a multielectron bubble, as a function of tempera-
ture, externally applied pressure and number of electrons
in the bubble. We find that, owing to the difference in
the ripplon and longitudinal plasmon frequencies [17], the
ripplopolarons exist only in a Wigner crystallized state.
This state differs from the Wigner lattice of electrons,
in that the electrons in the ripplopolaron Wigner lat-
tice are localized by the electron-ripplon interaction rather
than the Coulomb repulsion, and in that the melting oc-
curs through the dissociation of the ripplopolarons. As
electron-ripplon interaction is weakened (for example by
reducing the externally applied pressure on the multielec-
tron bubble) the electrons can shed their localized dim-
ple and the ripplopolaron Wigner state is destroyed. The
melting transition is shown to occur in a region of phase
space that is accessible to recently proposed experiments
for stabilizing multielectron bubbles.
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Appendix A: Electron-ripplon interaction
in MEBs

A.1 Ripplon dispersion on a sphere

The modes of oscillation of the bubble surface will be
called ‘ripplons’ in analogy with the surface oscillations
on a flat helium surface. In general, the deformed bubble
surface can be described by a function R(Ω) which gives
the distance, from the center of the bubble, of the bubble
surface in the direction determined by the spherical angles
Ω = {θ, φ}. The deformation u(Ω) from spherical symme-
try can be expanded in spherical harmonics Y�m(Ω):

R(Ω) = Rb + u(Ω) = Rb +
∑
�,m

Q�,mY�,m(Ω). (39)

In this expression, Rb is the angle-averaged radius, and
Q�m is the amplitude of the deformational mode corre-
sponding to the spherical harmonic Y�,m. In the summa-
tion, we abbreviate

∑
�,m =

∑∞
�=1

∑�
m=−�. The equilib-

rium bubble radius is found by balancing the surface ten-
sion and pressure terms with the Coulomb repulsion: Rb

satisfies

2σRb + pR2
b =

e2

4πεR2
b

, (40)

with σ ≈ 3.6 × 10−4 J/m2 the surface tension of helium,
ε = 1.0572 the dielectric constant of helium, p the differ-
ence in pressure outside and inside the bubble, e the elec-
tron charge and N the number of electrons in the bubble.
Expanding the energy of the bubble up to second order
in Q�m allows to derive the frequency of oscillation of a
particular mode of deformation [8]:

ω(�) =

√
�+ 1
ρR3

b

[
σ(�2 + �+ 1) + pRb − N2e2

4πεR3
b

�2−ε(�+1)
�+ε(�+1)

]
,

(41)
where ρ ≈ 145 kg/m3 the mass density of helium. Thus,
for small amplitude deformations of the bubble, we find
that the shape of the bubble oscillates with frequencies
given by (41). Taking the bare ripplon frequency (without
the effect of the interaction with electrons) and putting
Rb → ∞ (with �/Rb = q a constant) we find

ωbare
Rb→∞(q) =

√
σ

ρ
q3 +

pRb

ρ
q. (42)

This dispersion relation corresponds to the ripplon disper-
sion on the flat surface, with the difference that there is in
our dispersion relation no gravitational term, but a term
related to the pressure on the bubble.

A.2 Electron ripplon interaction in the MEB

The interaction energy between the ripplons and the elec-
trons in the multielectron bubble can be derived from the
following considerations: (i) the distance between the layer
of electrons and the helium surface is fixed (the electrons
find themselves confined to an effectively 2D surface an-
chored to the helium surface [5]) and (ii) the electrons are
subjected to a force field, arising from the electric field of
the other electrons. For a spherical bubble, this electric
field lies along the radial direction and equals

E = − Ne

2R2
b

er. (43)

A bubble shape oscillation will displace the layer of elec-
trons anchored to the surface. The interaction energy
which arises from this, equals the displacement of the elec-
trons times the force eE acting on them. Thus, we get for
the interaction Hamiltonian

Ĥint =
∑

j

e|E| × u(Ω̂j). (44)

Here u(Ω) is the radial displacement of the surface in the
direction given by the spherical angleΩ; and Ω̂j is the (an-
gular) position operator for electron j. The displacement
can be rewritten using (39) and we find

Ĥint =
∑

j

e|E|
∑
�,m

Q̂�mY�m(Ω̂j). (45)

Using the relation

Q̂�,m = (−1)(m−|m|)/2

√
�(�+1)
2ρR3

bω�
(â�,m + â+

�,−m), (46)

the interaction Hamiltonian can be written in the sugges-
tive form

Ĥint =
∑
�,m

∑
j

M�,mY�,m(Ω̂j)(â�,m + â+
�,−m), (47)

with the electron-ripplon coupling amplitude for a MEB
given by

M�,m = (−1)(m−|m|)/2Ne
2

2R2
b

√
�(�+ 1)
2ρR3

bω�
· (48)

A.3 Locally flat approximation

Substituting M�,m into (47), we get

Ĥint =
∑
�,m

∑
j

Ne2

2R2
b

√
�(�+ 1)
2ρR3

bω�

×
[
(−1)(m−|m|)/2Y�,m(Ω̂j)

Rb

]
(â�,m + â+

�,−m). (49)
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In this expression, we consider the limit of a bubble so
large that the surface becomes flat on all length scales
of interest. Hence we let Rb → ∞ but keep �/Rb = q a
constant. This means we have to let � → ∞ as well. In
this limit,

lim
�→∞

Y�,0(θ) =
i�

π
√

sin θ
sin[(�+ 1/2)θ + π/4], (50)

and Y�,0(θ) varies locally as a plane wave with wave vector
q = �/Rb. The wave function Y�,m(Ω̂j)/Rb is furthermore
normalised with respect to integration over the surface
(with total area 4πR2

b). Thus, we get in the locally flat
approximation

Ĥint =
∑
q

∑
j

Ne2

2R2
b

√
�q

2ρω(q)
eiq.r̂j(âq + â+

−q), (51)

or

Ĥint =
∑
q

∑
j

Mqeiq.r̂j(âq + â+
−q),

Mq = e|E|
√

�q

2ρω(q)
· (52)

This corresponds in the limit of large bubbles to the in-
teraction Hamiltonian expected for a flat surface.
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